浅谈大数据时代的企业安全管理平台

2018-06-08 12:51:21 新网程 349

随着信息技术的快速发展和广泛应用,催生互联网新产品和新模式不断涌现。以金融行业为例,网上银行、网上交易等新技术的产生,给人们带来了极大便利的同时,也带来了诸多安全问题。


一、简介


当前计算机网络与信息安全领域,正面临着一场全新的挑战。一方面,伴随大数据和云计算时代的到来,安全问题正在变成一个大数据问题。另一方面,国家、企业和组织所面对的网络空间安全形势严峻,需要应对的攻击和威胁变得日益复杂,这些威胁具有隐蔽性强、潜伏期长、持续性强的特点。面对这些新挑战,传统的企业安全管理平台局限性显露无遗,主要体现在以下几个方面:

640.webp (4).jpg

1. 海量数据的处理:企业安全管理平台管理涉及企业网络中的各种安全设备、应用系统等,每天会产生大量的安全事件和运行日志等安全数据,其数据量可能非常巨大。面对海量数据时,传统的企业安全管理平台技术架构在数据采集、存储、分析处理和展现方面也遭遇不同瓶颈。


2. 多源异构数据采集:企业网络中的各种安全设备、网络设备等的不同,企业安全管理平台面对的安全数据在结构和格式上均不统一,给数据分析带来困难。这一问题造成企业安全管理平台数据采集效率降低,从而导致性能上遇到瓶颈。


3. 安全数据分散和孤立:企业网络中的各种安全设备、网络设备、应用系统等会分散在网络的不同位置,如果各个数据之间缺乏有效的关联,则会导致安全信息的孤立,形成信息孤岛,无法对大量数据进行整体性的分析。


4. 缺乏深度挖掘手段:当前网络环境中新型攻击手段层出不穷,与传统攻击手段不同,新型攻击手段更加隐蔽,用传统检测方法更加难以发现,比如APT攻击。面对新型攻击手段的长期性、隐蔽性和高级性,传统的基于实时分析的监控技术已经不再适应,为了防止新型攻击手段造成的危害,有必要对历史安全数据进行深层的离线挖掘,从大量的历史数据之中发现新型攻击行为的端倪,从而防患于未然。


二、何为大数据?

640.webp (5).jpg

大数据的通俗定义为用现有的一般技术难以管理的大量数据的集合。广义定义为一个综合性概念,它包括因具备4V(Volume/Variety/Velocity/Value)特征而难以进行管理的数据,对这些数据进行存储、处理、分析的技术,以及能够通过分析这些数据获得实用意义和观点的人才和组织。


三、大数据在信息安全上的应用


大数据在信息安全上的应用主要表现为,数据的爆炸性增长给目前的信息安全技术带来了挑战,传统的信息安全技术在面对超大数据量时已经不再适宜,需要基于大数据环境的特点开发新一代安全技术。

基于这个背景,业界开始将信息安全的研究重点转向智能驱动的信息安全模型,这是一种能够感知风险的、基于上下文背景的、灵活的、能帮助企业抵御未知高级网络威胁的模型。

其次,大数据理念可以被利用到信息安全技术中来,比如通过大数据分析可以对海量的网络安全数据进行快速有效的关联分析,从中找出与网络安全相关的信息。可以预测,将大数据集成至安全实践,将会极大地增强对IT环境的可视性,提高鉴别正常活动和可疑活动的能力,从而帮助确保IT系统的可信性,并大大提高安全事件响应能力。

640.webp (6).jpg

四、大数据安全分析


大数据安全分析,顾名思义,就是指利用大数据技术来进行安全分析。借助大数据安全分析技术,能够更好地解决海量安全数据的采集、存储的问题,借助基于大数据分析技术的机器学习和数据挖据算法,能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。


五、大数据分析在企业安全管理平台上的应用


目前应用于大数据分析的主流技术架构是Hadoop,业界在进行大数据分析时越来越重视它的作用。Hadoop的HDFS技术和HBase技术与大数据的超大容量存储需求正好匹配,Hadoop的MapReduce技术也能满足大数据的快速实时分析需求。


借助大数据分析框架及大数据安全分析技术,能够很好地解决传统企业安全管理平台的安全数据采集、分析、存储、检索问题。但是,不论企业安全管理平台的技术如何发展,如何与大数据结合,企业安全管理平台所要解决的客户根本性问题,以及与客户业务融合的趋势依然未变。对大数据的应用依然要服务于解决客户的实际安全管理问题这个根本目标。